CVPR 2025 Tutorial: Efficient Text-to-Image/Video Modeling

Ameesh Makadia

12 June 2025

Google Research

Compression

More compact latent spaces \rightarrow more efficient generation

Compression

More compact latent spaces \rightarrow more efficient generation

Structured representations

Latent representation design that enables efficient modeling

Compression

More compact latent spaces \rightarrow more efficient generation

Structured representations

Latent representation design that enables efficient modeling

Data sparsity

Generative models designed for data-sparse settings

Agenda

Part I - Compression (15 min) Factorized latent representations for video

Part II - Structured representations (15 min)

Multiscale image generation with autoregressive models

Part III - Data sparsity (< 10 min) Diffusion models from a single 3D shape

Part I

Factorized latent representations for video

Latent generative models

- Reduce burden of generation in high dimension image/pixel space
- Reconstruction losses: pixel (MSE), perceptual (LPIPS), discriminator
- Latent representation is a heavily compressed, e.g. 512x512x3→64x64x4
- Individual tokens can be discrete (vector quantization) or continuous

van den Oord et al., <u>Neural Discrete Representation Learning</u>, 2017. Razavi et al., <u>Generating Diverse High-Fidelity Images with VQ-VAE-2</u>, 2019. Esser et al., <u>Taming Transformers for High-Resolution Image Synthesis</u>, 2020. Rombach et al., <u>High-Resolution Image Synthesis with Latent Diffusion Models</u>, 2021.

Latent generative models

Autoregressive token decoding

Stage 1: training autoencoder to learn latent feature space (image \rightarrow visual tokens)

Stage 2: training a generative model for latent features

Autoregressive models (discrete tokens)

van den Oord et al., <u>Neural Discrete Representation Learning</u>, 2017. Razavi et al., <u>Generating Diverse High-Fidelity Images with VQ-VAE-2</u>, 2019. Esser et al., <u>Taming Transformers for High-Resolution Image Synthesis</u>, 2020. Ramesh et al., <u>Zero-Shot Text-to-Image Generation</u>, 2021. Yu et al., <u>Scaling Autoregressive Models for Content-Rich Text-to-Image Generation</u>, 2022.

Latent generative models

Stage 1: training autoencoder to learn latent feature space (image → visual tokens)
Stage 2: training a generative model for *latent features/tokens*Autoregressive models (discrete tokens)
Diffusion models (continuous tokens)

Rombach et al., <u>High-Resolution Image Synthesis with Latent Diffusion Models</u>, 2021. Peebles and Xie, <u>Scalable Diffusion Models with Transformers</u>, 2022.

Autoencoding spatiotemporal volumes

 \rightarrow spatiotemporal latent features (H x W x T \rightarrow H' x W' x T', O(HWT) storage)

Autoencoding spatiotemporal volumes

 \rightarrow spatiotemporal latent features (H x W x T \rightarrow H' x W' x T', O(HWT) storage)

Generative modeling w/spatiotemporal structure

3D U-Net (Video Diffusion Models, 2022)

Cicek et al., 3D U-Net: learning dense volumetric segmentation from sparse annotation, 2016.

Ho et al., Video Diffusion Models, 2022.

Ho et al., Imagen video: High definition video generation with diffusion models, 2022.

Autoencoding spatiotemporal volumes

→ spatiotemporal latent features (H x W x T → H' x W' x T', O(HWT) storage)
 Generative modeling w/spatiotemporal structure
 3D U-Net (Video Diffusion Models, 2022)
 Sequence modeling (tokens unrolled into a 1D sequence)
 Autoregressive transformers (TATS)
 Masked transformers (Phenaki, Magvit, Magvit-v2)
 Transformer diffusion (W.A.L.T.)

Ge et al., <u>Long Video Generation with Time-Agnostic VQGAN and Time-Sensitive Transformer</u>, 2022. Villegas et al., <u>Phenaki: Variable length Video Generation From Open Domain Textual Descriptions</u>, 2022. Yu et al., <u>MAGVIT: Masked Generative Video Transformer</u>, 2022. Yu et al., <u>Language Model Beats Diffusion – Tokenizer is Key to Visual Generation</u>, 2023. Gupta et al., <u>Photorealistic Video Generation with Diffusion Models</u>, 2024.

For sequence models (masked transformer, autoregressive, diffusion transformer), efficiency is directly tied to the latent size

Can we further compress the latent space, without sacrificing reconstruction or generation quality? Volumetric latent space – scales linearly with the input size

Plane-factorization (factorize volumetric data into orthogonal planes)

Size scales sublinearly with the input

Tri-plane factorization

Triplane representations commonly used for 3D generation tasks 3D neural fields, 3D semantic scenes, 3D shapes

Recently applications to video tokenization: PVDM, HVDM, CMD Benefit from 2D diffusion models for image generation 2D conv UNets for each plane w/cross attention, fine-tuning DiT

Wu et al., <u>Sin3dm: Learning a diffusion model from a single 3d textured shape</u>, 2023.

Shue et al., 3D neural field generation using triplane diffusion, 2022.

Yu et al., Video Probabilistic Diffusion Models in Projected Latent Space, 2023.

Kim et al., Hybrid Video Diffusion Models with 2D Triplane and 3D Wavelet Representation, 2024.

Yu et al., Efficient video diffusion models via content-frame motion-latent decomposition, 2024.

Four-plane factorization

Triplane tokenization

Smaller latent sizes enable much faster generative model training and sampling

Generation quality still lags behind volumetric latent generation

Not easily adopted to all video generation tasks, e.g. frame extrapolation and interpolation

Four-plane factorization

Two spatial planes (orange), two spatiotemporal planes (blue / purple) Structure allows flexibility for different image-conditioned video generation tasks Favorable efficiency vs quality tradeoff when introduced into volumetric architectures 2x speedup in generative model training/sampling, comparable generation quality

Four-plane factorization

Factorization

The simplest operator (mean pooling) generalizes best, compared to learned linear projection, or transformer (PVDM)

Spatial planes are obtained after splitting the volume into two non-overlapping segments along time

Recomposition

Features are combined through concatenation to reconstitute the volume

Four-plane factorization

Adopt the W.A.L.T. framework for analysis

Encoder is Magvit-v2 causal 3D convolution architecture (also used by OpenSora, CogVideoX, ...)

Continuous 8-dimensional tokens

Generation is diffusion transformer model

W.A.L.T. + Four-plane tokenization

Introduce volume factorization and recomposition steps at the latent bottleneck

All other AE/Diffusion details mirror W.A.L.T.

Gupta et al., <u>Photorealistic Video Generation with Diffusion Models</u>, 2024. Zheng et al., <u>Open-Sora: Democratizing Efficient Video Production for All</u>, 2024. Yang et al., <u>CogVideoX: Text-to-Video Diffusion Models with An Expert Transformer</u>, 2024.

Reconstruction

Kinetics-600 dataset, 17 frame videos

Res.	Method	PSNR↑	SSIM ↑	LPIPS↓	Seq.Len
128x128	Volumetric	27.64	0.85	0.049	1280
	4Plane	27.11	0.82	0.051	672
256x256	W.A.L.T.	26.27	0.79	0.089	1280
	Four-plane	25.67	0.77	0.104	672
	WF-VAE	27.86	0.83	0.064	1280
	Four-plane-WF-VAE	26.98	0.81	0.073	672

Number of frames	PSNR ↑	SSIM↑	LPIPS↓
17	27.11	0.82	0.051
21	26.95	0.82	0.051
25	26.51	0.81	0.052

Four-plane reconstruction for longer videos

256x256 tokenizers - extra layer to the encoder and decoder Comparable reconstruction metrics despite half the sequence length WF-VAE is the AE architecture for OpenSoraPlan

Generation

Tokenizer: Kinetics-600 dataset, 17 frame videos Diffusion model trained on UCF-101

	Class Conditional	Params	Steps	
	UCF-101 (128x128)	UCF-101 (256x256)	i urumb	Steps
MAGVIT	76	-	306M	48
MAGVIT-v2	58	-	307M	24
WALT	39	84.68	214M	50
Four-plane	38	58.27	214M	50

	Class Conditional	Params	Stens	
	UCF-101 (128x128)	UCF-101 (256x256)	i urums	Steps
PVDM	-	399.4	-	400
HVDM	-	303.1	63M	100
CMD	73	-	-	-
Tri-plane	52	-	214M	50
Four-plane	38	58.27	214M	50

Generation cost (TPU-v5e-2x2, four 17-frame 128x128 videos): 0.71s Four-plane, 1.59s W.A.L.T. (> 2x faster)

Yu et al., MAGVIT: Masked Generative Video Transformer, 2022.

- Yu et al., Language Model Beats Diffusion Tokenizer is Key to Visual Generation, 2023.
- Yu et al., Video Probabilistic Diffusion Models in Projected Latent Space, 2023.
- Kim et al., Hybrid Video Diffusion Models with 2D Triplane and 3D Wavelet Representation, 2024.

Yu et al., Efficient video diffusion models via content-frame motion-latent decomposition, 2024.

Class-conditional generation

256x256 class-conditional generation

Wall pushups

Surfing

Pushups

Lunges

Handstand walking

Billiards

Interpolation

256x256 resolution 9-frame interpolation VIDIM: cascaded diffusion models

Text-to-Video

300M internet videos FVD (17 frame, 128x128): 18.22 for W.A.L.T., 20.24 for Four-plane

"Flying over the mountains with a river"

Text-to-Video

300M internet videos FVD (17 frame, 128x128): 18.22 for W.A.L.T., 20.24 for Four-plane

"A wave reaching the beach"

Part II

Multiscale image generation with autoregressive models

Latent Generative Models for Images

Illustration is in pixels space, but latent models operate in the AE latent space (tokens)

Autoregressive models

Recent trend: more powerful autoregressive image generation models

LlamaGen (Sun et al, "<u>Autoregressive Model Beats Diffusion: Llama for Scalable</u> <u>Image Generation</u>", 2024)

VAR (Tian et al, "<u>Visual autoregressive modeling: Scalable image generation via</u> <u>next-scale prediction</u>", 2024)

Open-MAGVIT2 (Luo et al., "<u>Open-MAGVIT2 An Open-Source Project Toward</u> <u>Democratizing Auto-regressive Visual Generation</u>", 2024)

Autoregressive generation

• • •

Strategic

Borrow from widely successful LLM architectures

Ideal for multimodal applications where all representations are discrete tokens

Autoregressive models

Recent trend: more powerful autoregressive image generation models

LlamaGen (Sun et al, "Autoregressive Model Beats Diffusion: Llama for Scalable Image Generation", 2024)

VAR (Tian et al, "<u>Visual autoregressive modeling: Scalable image generation via</u> <u>next-scale prediction</u>", 2024)

Open-MAGVIT2 (Luo et al., "<u>Open-MAGVIT2 An Open-Source Project Toward</u> <u>Democratizing Auto-regressive Visual Generation</u>", 2024)

•••

Strategic

Borrow from widely successful LLM architectures

Ideal for multimodal applications where all representations are discrete tokens Drawback

Conditioning for next-token prediction is not ideal (partial image) Prefer conditioning on a noisy version of the full image (diffusion models!)

Autoregressive models

Diffusion models

Multiscale (coarse-to-fine) tokenization

Multiscale tokenizers

VAR (Tian et al, "<u>Visual autoregressive modeling: Scalable image generation via next-scale prediction</u>", 2024) VQ-VAE-2 (Razavi et al., <u>Generating Diverse High-Fidelity Images with VQ-VAE-2</u>, 2019) RQ-VAE (Lee et al., "<u>Autoregressive Image Generation using Residual Quantization</u>", 2022)

Multiscale quantization of the latent space

Residual design

Better conditioning – next-scale prediction depends on previous scales

Multiscale (coarse-to-fine) tokenization

Multiscale tokenizers - coarse-to-fine quantization of the *latent* space

Example, the coarsest token map does not correspond to the coarse image

Tokenizing multiscale image representations

Input is a coarse-to-fine *image* representation (Discrete Wavelet Transform) How do you tokenize the DWT?

SIT (Esteves et al., "Spectral Image Tokenizer," 2024)

Multiscale tokenizer

Multiscale tokenizer

Multiscale tokenizer

Multiscale detokenizer

Multiscale detokenizer

Multiscale detokenizer

Spectral image tokenizer

Prior work (e.g. ViT-VQGAN)

ViT-VQGAN: Transformer encodes patches of the input image

Yu et al., Vector-quantized Image Modeling with Improved VQGAN, 2021.

Spectral image tokenizer

SIT: Transformer encodes patches of the Discrete Wavelet Transform (Haar wavelets)

Haar Wavelet Transform

Haar filters

Spectral image tokenizer - details

Larger patches for higher frequencies \rightarrow Same number of tokens per scale

Limits sequence length

Higher frequencies are compressed more (desirable since they are sparser)

Different quantizer codebooks per scale (content distribution changes across scales)

Spectral image tokenizer - details

Larger patches for higher frequencies \rightarrow Same number of tokens per scale

Limits sequence length

Higher frequencies are compressed more (desirable since they are sparser)

Different quantizer codebooks per scale (content distribution changes across scales) Scale-causal self-attention

Ensures different inputs with same lower frequency coefficients have identical tokens at those scales

Spectral image tokenizer - details

Larger patches for higher frequencies \rightarrow Same number of tokens per scale

Limits sequence length

Higher frequencies are compressed more (desirable since they are sparser)

Different quantizer codebooks per scale (content distribution changes across scales) Scale-causal self-attention

Ensures different inputs with same lower frequency coefficients have identical tokens at those scales Autoregressive transformer based on Parti (Yu et al., "<u>Scaling Autoregressive Models for</u> <u>Content-Rich Text-to-Image Generation</u>", 2022)

Different token embeddings per scale

Multiscale reconstruction (ImageNet)

	LPIPS \downarrow	$\mathbf{PSNR}\uparrow$	L1 \downarrow	$FID\downarrow$	IS \uparrow	images/s ↑
Resolution: 512×512						
ViT-VQGAN	0.320	22.4	0.042	6.92	151.5	593
SIT-5 (Ours)	0.260	22.0	0.046	2.65	192.0	410
SIT-6 (Ours)	0.239	23.1	0.040	1.74	203.7	320
Resolution: 256×256						
ViT-VQGAN (reported)	-	24.8	0.032	1.99	184.4	-
ViT-VQGAN (reproduced)	0.167	25.0	0.031	2.33	184.0	-
ViT-VQGAN (no LL)	0.163	23.8	0.038	1.20	194.6	626
SIT-4 (Ours)	0.144	24.0	0.037	1.20	199.5	596
SIT-5 (Ours)	0.135	24.5	0.035	0.97	202.3	411
SIT-SC-5 (Ours)	0.161	24.1	0.037	1.33	193.7	411
Resolution: 128×128						
ViT-VQGAN	0.185	26.3	0.030	3.77	117.3	626
SIT-SC-5 (ours)	0.159	27.1	0.027	2.13	129.3	582
Resolution: 64×64						
ViT-VQGAN	0.129	28.8	0.023	3.53	21.0	627
SIT-SC-5 (ours)	0.111	31.3	0.017	1.39	30.1	847
Resolution: 32×32						
ViT-VQGAN	0.214	23.3	0.045	-	3.7	627
SIT-SC-5 (ours)	0.029	36.8	0.010	0.31	3.5	825
Resolution: 16×16						
ViT-VQGAN	0.127	24.9	0.039	-	1.7	627
SIT-SC-5 (ours)	0.013	41.3	0.006	0.09	1.8	2620

Multiscale generation (text-to-image on MSCOCO)

	$\mathrm{FID}\downarrow$	IS \uparrow	images/s \uparrow	images/Gb ↑
Resolution: 256×256				
Parti350M (reported)	14.1	-	_	-
Parti350M	12.4	36.5	7.8	12.0
AR-SIT-SCD-4	12.6	37.3	6.5	8.0
Resolution: 128×128				
Parti350M	11.2	33.5	7.6	12.0
AR-SIT-SCD-4	11.4	33.2	12.6	12.0
Resolution: 64×64				
Parti350M	10.5	16.9	7.6	12.0
AR-SIT-SCD-4	11.4	18.6	24.5	16.0
Resolution: 32×32				
Parti350M	5.8	2.9	7.7	7.7
AR-SIT-SCD-4	7.6	3.2	74.7	28.0

Class-conditional generation @ 512x512

Text-guided upsampling $16x16 \rightarrow 256x256$

"a cupcake on a red checkered tablecloth" SIT **AR-SIT** 2 2 2 4 9 4 2 8 3 4 1 1

"a motorcycle parked outside in a parking lot near the beach."

"a white table with glasses and red white and orange flowers"

"a cupcake on a plate on a red checkered tablecloth"

"a piece of chocolate cake sitting on top of a wooden cutting board."

"a train is making its way down the tracks."

"crust topped with meat and vegetables on a stone pizza board."

Text-guided upsampling $16x16 \rightarrow 256x256$

"a cupcake on a red checkered tablecloth"

Text-guided editing

"a green pasture filled with wildflowers."

"a crawler crane on a grass covered field."

"five brussel sprouts on the table"

"a close-up of a dog face."

"a cake on a plate by a beer."

Part III

Diffusion models from a single 3D shape